

The Bren School's mission ...

• ... is to play a leading role in training professionals and research scientists, discovering new knowledge about environmental issues, and identifying and solving environmental problems

Chronology — Academic

- 1991: UC Regents
 approve formation of the
 School of Environmental
 Science and Management
- 1992: Dean search begins
- 1995: First faculty hires
- 1994: Founding Dean appointed

- 1996: First master's class admitted
- 1997: Bren gift, change name to Bren School
- 1998: First PhD students admitted
- 1999: MBA concentration
- 2000: Third master's class graduates

The Bren School's degree programs

- MESM, Fall '96
 - 2-year professional degree, for students who will work in government agencies, corporations, non-profit organizations, and consulting firms
- MBA concentration, Fall '99
 - Emphasis in corporate environmental management for students in UC business schools
- PhD, Fall '98
 - Build the natural and social science knowledge bases
 - Evaluate and design environmental policies
 - Preparation for academic and non-academic careers

Ideal graduate

- *Knowledge* of environmental science and management, with expertise in a specialty area
- Technical and "soft" *Skills*, including statistics, computing, project management, teamwork, ...
- Professional *Qualities*, including creativity, leadership, judgment, integrity, ability to handle difficult situations, ...

Sustainable Design for the University

Principles

- Don't scar the Earth
- Don't make people sick
 - In manufacturing of materials
 - In use of building
 - After use of building
- Don't pollute the air and water

Guidelines

- Sustainable sites
- Water efficiency & quality
- Energy efficiency & air quality
- Materials and resources
- Indoor environmental quality

LEED Green Building Rating SystemTM Version 2

- LEED Leadership in Energy and Environmental Design
 - U.S. Green Building Council (www.usgbc.org)
- Set of prerequisites and credits for evaluating a building's sustainability
 - 64 core points + 5 innovation points
 - Certified 26 points, Silver 33 points, Gold 39, Platinum 52

Considerations

Bren Hall — Third Floor Plan

Likely LEED Performance for Bren Hall

- Certification: Assured (first UC building)
- Silver Medal: Likely
- Gold Medal: Possible with some additional money (would be first gold-medal building)

The Cost of Greening

- Design fees
 - Base fees should not increase if goal is upfront
 - Additions for energy modeling and LEED documentation (\$40K)
- Construction cost
 - Need to consider total cost of ownership
 - How much is societal benefit worth?

- Owner costs
 - Peer & consultant reviews
 - Additional project management
- Operations and maintenance costs
 - Training needed
 - Should realize cost saving

Cost Effectiveness

Energy savings per year if we implement cost-effective changes	\$32,000
Present Value over 10 years @ 6%	\$236,000
Bid cost to implement these changes	\$148,000
Net Present Value over 10 years @ 6%	\$88,000
Carbon emission saved, per year	54 MT

Local Energy Sources

	Approx cost	CEC buy down	Energy Savings	PV, 6%, 10 years
200 kW fuel cell	\$950,000 (incl infr.)	\$410,000	\$46,000	
40 kW PV tiles	\$414,200	\$100,000	\$7,000	
	\$1,364,200	(\$510,000) \$854,000	\$53,000	\$390,000

Funding Sources

- California Energy Commission
 - Grants for fuel cells, photovoltaics, consultant, post-occupancy programs
 - Loans for energy efficiency
- Vendors
 - Forbo, Milliken,
 Waterless, Herman
 Miller, Sarnafil

- Southern California Edison
 - Energy modeling
 - Savings by Design program
 - \$250K to owner, \$50K to design team
 - Incentives
- Donors
 - Jim Davidson, [Your name goes here]

Affecting the Future—Campus Standards

- Policy needed
 - Chancellor, Academic Senate
 - Earlier Start
- Part of personnel processes
 - Training, selection and hiring
 - Performance evaluation

- Performance target
 - LEED Certification
 - Audit
- Process
 - Design review
 - Integrated management
 - Cost of ownership & life-cycle costs
 - Environmental accounting

BUILDING SECTION / ELEVATION

1 Laboratory 2 Laboratory Support 3 Office 4 Classroom

LABORATORY PLANS

Elements of design

- Site
- Energy
- Conservation
- Interior Environment
- Water

Energy

• Efficiency [VAV, etc.]

• Natural Ventilation, Light [Light Shelves, Sunscreens]

- Waste Heat Recovery
- Renewable and Alternative Energy
- Daylighting Controls

Fuel Cell

Like a battery that never runs down

- High Quality Electricity
- Noise Free
- Pollution Free

Fuel Cell Power Plant

Energy Operating Costs

VAV

Usage Based Controls

- Improves safety
- Reduces construction cost
- Saves energy
- Eliminates costly maintenance
- Reduces system commissioning time
- Integrates easily
- Avoids need to re-balance

The
Safe Choice
for
Laboratory
Airflow
Control.

Photovoltaics

Title 24

No	Case	Total Source	Process Source	Adjusted Source	Percent	Electrical	Lighting	Annual Site Energy Use	
		Energy per sqft	Energy per sqft	Energy ¹ per sqft	Below Title 24	Peak Demand	Site Energy	Electricity	Natural Gas
		kBtu/(sqft-yr)	kBtu/(sqft-yr)	kBtu/(sqft-yr)	%	kW	kWh/year	kWh/year	Therm/year
0	Standard Design	271.4	30.0	241.4	0.0	667	369673	1,991,459	42,839
1	Natural Ventilated Offices	255.3	30.0	225.3	6.7	609	369673	1,876,031	40,039
2	Premium efficiency variable Pumps	267.3	30.0	237.3	1.7	665	369673	1,968,907	41,392
3	Lab Fume Hood VAV	228.2	30.0	198.2	17.9	640	369673	1,781,572	25,053
10	First Design as a Comb of 0,1,2,3	211.2	30.0	181.2	24.9	583	369673	1,667,088	21,366
	Strategies based on First Design								
12	Lab Fume Hood sensor	210.6	30.0	180.6	25.2	582	369673	1,668,453	20,603
13	Additional Chiller Pump	205.7	30.0	175.7	27.2	582	369673	1,617,775	21,345
14	Daylight Control within Office wing	205.1	30.0	175.1	27.5	559	312804	1,610,034	21,633
17	High eff. Chiller+Tower Combinat.	206.0	30.0	176.0	27.1	565	369673	1,620,196	21,366
18	High efficiency Boiler	208.5	30.0	178.5	26.1	583	369673	1,667,511	18,841
19	Reduced Lighting Power Density	204.9	30.0	174.9	27.5	564	319787	1,607,597	21,649
30	Actual Design (0,1,2,12,13,14,17,18,19)	185.8	30.0	155.8	35.5	527	276821	1,469,107	18,468

¹ Excludes Process Energy

Lessons Learned

- Start early on greening! More cost effective
- Need a mechanism for factoring greening costs when project budgets are established
- Be alert to opportunities that exist and recognize what can be implemented without significant cost impact